skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saisubramanian, Sandhya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When independently trained or designed robots are deployed in a shared environment, their combined actions can lead to unintended negative side effects (NSEs). To ensure safe and efficient operation, robots must optimize task performance while minimizing the penalties associated with NSEs, balancing individual objectives with collective impact. We model the problem of mitigating NSEs in a cooperative multi-agent system as a bi-objective lexicographic decentralized Markov decision process. We assume independence of transitions and rewards with respect to the robots' tasks, but the joint NSE penalty creates a form of dependence in this setting. To improve scalability, the joint NSE penalty is decomposed into individual penalties for each robot using credit assignment, which facilitates decentralized policy computation. We empirically demonstrate, using mobile robots and in simulation, the effectiveness and scalability of our approach in mitigating NSEs. Code: \url{https://tinyurl.com/RECON-NSE-Mitigation} 
    more » « less
    Free, publicly-accessible full text available May 23, 2026
  2. Verification and validation of AI systems, particularly learning-enabled systems, is hard because often they lack formal specifications and rely instead on incomplete data and human subjective feedback. Aligning the behavior of such systems with the intended objectives and values of human designers and stakeholders is very challenging, and deploying AI systems that are misaligned can be risky. We propose to use both existing and new forms of explanations to improve the verification and validation of AI systems. Toward that goal, we preseant a framework, the agent explains its behavior and a critic signals whether the explanation passes a test. In cases where the explanation fails, the agent offers alternative explanations to gather feedback, which is then used to improve the system's alignment. We discuss examples of this approach that proved to be effective, and how to extend the scope of explanations and minimize human effort involved in this process. 
    more » « less